
SPECIAL SECTION ON DATA-ENABLED INTELLIGENCE FOR DIGITAL HEALTH

Received May 30, 2019, accepted July 8, 2019, date of publication July 16, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929258

PnP-AdaNet: Plug-and-Play Adversarial Domain
Adaptation Network at Unpaired Cross-Modality
Cardiac Segmentation
QI DOU 1,2, (Member, IEEE), CHENG OUYANG2, CHENG CHEN1, HAO CHEN 1, (Member, IEEE),
BEN GLOCKER 2, XIAHAI ZHUANG4, AND PHENG-ANN HENG 1,3, (Senior Member, IEEE)
1Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
2Department of Computing, Imperial College London, London SW7 2AZ, U.K.
3T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong
4School of Data Science, Fudan University, Shanghai 200433, China

Corresponding authors: Qi Dou (qi.dou@imperial.ac.uk) and Xiahai Zhuang (zxh@fudan.edu.cn)

This work was partially supported by HK RGC TRS project T42-409/18-R and in part by the CUHK T Stone Robotics Institute, CUHK,
and in part by European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant
agreement No 757173, project MIRA, ERC-2017-STG), and in part by Science and Technology Commission of Shanghai Municipality
(17JC1401600).

ABSTRACT Deep convolutional networks have demonstrated state-of-the-art performance on various
challenging medical image processing tasks. Leveraging images from different modalities for the same
analysis task holds large clinical benefits. However, the generalization capability of deep networks on
test data sampled from different distribution remains as a major challenge. In this paper, we propose a
plug-and-play adversarial domain adaptation network (PnP-AdaNet) for adapting segmentation networks
between different modalities of medical images, e.g., MRI and CT. We tackle the significant domain shift
by aligning the feature spaces of source and target domains at multiple scales in an unsupervised manner.
With the adversarial loss, we learn a domain adaptation module which flexibly replaces the early encoder
layers of the source network, and the higher layers are shared between two domains. We validate our
domain adaptation method on cardiac segmentation in unpaired MRI and CT, with four different anatomical
structures. The average Dice achieved 63.9%, which is a significant recover from the complete failure (Dice
score of 13.2%) if we directly test an MRI segmentation network on CT data. In addition, our proposed PnP-
AdaNet outperforms many state-of-the-art unsupervised domain adaptation approaches on the same dataset.
The experimental results with comprehensive ablation studies have demonstrated the excellent efficacy of
our proposed method for unsupervised cross-modality domain adaptation. Our code is publically available
at https://github.com/carrenD/Medical-Cross-Modality-Domain-Adaptation

INDEX TERMS Domain adaptation, adversarial learning, cardiac segmentation, medical imaging.

I. INTRODUCTION
Deep learning models, especially the convolutional neural
networks (CNNs), have achieved remarkable successes
during the past years, achieving state-of-the-art or even
human-level performance on a variety of challenging med-
ical imaging problems [1]–[3]. Typically, the deep networks
are trained and tested on datasets where all the images are
sampled from the same distribution. Despite the risk of
over-fitting, the models are able to produce highly-accurate
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predictions on new test data from the same domain. How-
ever, it has been frequently observed that established models
under-perform when being tested on samples coming from a
related but different new target domain [4]–[6]. For medical
image computing in digital health field, the scenarios include
the case that the test and training images come from different
sites [7], [8] or different scanning protocols [9], [10] or even
different imaging modalities [11], [12].

Different from natural imageswhich are generally obtained
by optical cameras, a typical situation in the medical field
is the usage of various imaging modalities, capturing dif-
ferent physical properties. These different modalities play
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FIGURE 1. Illustration of severe domain shift existing in cross-modality
images. The appearances of the cardiac structures (AA: Ascending aorta,
LV-blood: Left ventricle blood cavity, LV-myo: Left ventricle myocardium)
look significantly different on MRI and CT images, though segmentation
masks look very similar.

complementary roles in clinical procedure of disease diagno-
sis and treatment. For example, Magnetic Resonance Imag-
ing (MRI) and Computed Tomography (CT) have become
indispensable tools for cardiac imaging. Specifically, MRI is
ionizing radiation free and captures great contrast between
soft tissues with high resolution in temporal space [13]. It
features multi-parametric assessment of the myocardial con-
tractivity and viability. By contrast, CT allows rapid imaging
of the cardiac morphology, myocardial viability and coronary
calcification, with great spatial resolution [14].

In practice, often the same image analysis task is required,
such as segmentation or quantification of cardiac struc-
tures. Considering that annotation is prohibitively time-
consuming and expensive (e.g., a whole heart segmentation
from either MRI or CT takes up to 8 hours by a well-
trained operator [15]), effectively adapting the model trained
on one modality to the other holds clinical benefits. However,
the appearances of cardiac MRI and CT are considerably
different, with distinct contrasts and intensity histograms,
as shown in Fig. 1. Unsupervised domain adaptation under
such significant domain shift is very challenging, as well as
yet to be explored.

Most methods for unsupervised domain adaptation focus
on aligning the distributions in latent feature space, by mini-
mizing measures of distances between the features extracted
from the source and the target domain [16], [17]. For exam-
ple, the Maximum Mean Discrepancy (MMD) is minimized
together with a task-specific loss to learn domain-invariant
and semantically-meaningful features in [18]. Long et al. [19]
minimize MMD of domain features embedded in a repro-
ducing kernel Hilbert space. Sun and Saenko [20] propose
to align the feature covariances between domains. More
recently, with the advancement of generative adversarial net-
works (GAN) [21] and its powerful extensions [22], [23],
the latent feature spaces across domains can be implic-
itly aligned via adversarial learning. Notably, the DANN
method is proposed to extract domain-invariant features
by fully sharing weights of the CNN encoder between
domains [17]. Tzeng et al. [16] introduce a more untied
adversarial learning framework, named ADDA, where each
domain has a dedicated domain-specific encoder before
the last classification layer shared by both domains. Most
recent studies further propose to train with auxiliary tasks
on both domains, which serves as additional constraints

for feature alignment [24]. Alternatively, in terms of GAN
based domain adaptation, another stream of solutions align
input spaces of networks instead. They make use of unsu-
pervised image-to-image translation, i.e., training the net-
work with target-like synthetic source data, or testing
with source-like target ones [12], [25], [26]. Most of
them are based on a CycleGAN [23] foundation, where
bi-directional image translations are learned by two GANs
separately, and the consistency constraint between image
transforms are enforced to preserve semantic information
between transforms. Some other methods [27] combine fea-
ture alignment and image transformation together, however,
the established framework rather sticks to improving target
domain performance, and is not flexible between source and
target domains.

For medical image computing, adversarial learning has
presented inspiring efficacy on a wide variety of tasks
[28]–[32]. In particular towards domain adaptation, early
attempts have been made recently with the aim of gener-
alizing the learned models to unseen target domains. For
example, Zhang et al. [25] transformed unlabelled target
X-Ray images to appear like those source radiographs and
then directly tested the transformed images with the source
model trained with labelled source data only. Similarly based
on the CycleGAN, Jiang et al. [12] proposed a two-stage
approach to first transform target CT images to resemble
source MRI images, then conducted semi-supervised tumor
segmentation with both synthetic image and a limited number
of real MRI. Meanwhile, following the spirit of aligning
latent feature spaces, there are a set of works aiming to
extract domain-invariant representations from unpaired data.
Degel et al. [33] minimized a segmentation loss in together
with a domain adversarial training loss to encourage feature
domain-invariance across ultrasound datasets for left atrium
segmentation. Ren et al. [34] utilized adversarial learning to
align the feature distribution of target images to the source
domain for classifying histology images obtained in different
staining procedures. These works have demonstrated that
imposing alignment in feature space helps to generalize deep
models to new data from a different domain. One of the
most related work is Kamnitsas et al. [9], which conducted
unsupervised domain adaptation by adversarial learning in
multi-level feature space for brain lesion segmentation. The
experimental setting is challenging as the unlabelled target
domain contains a new MRI sequence which is unseen to
the source model. By sharing encoders and aligning multi-
level features, the method achieved promising results in
target domain. However, designing flexible framework for
unsupervised domain adaptation with minimal affect on the
original source model, while mitigating drastic domain shift
between modalities remains an open problem. Meanwhile,
in terms of the highly challenging setting of cross-modality
image segmentation from CT and MRI, to the best of our
knowledge, related literature is limited. Valindria et al. [35]
developed a joint learning method for multi-organ segmenta-
tion using unpaired MRI and CT. Zhang et al. [30] proposed
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FIGURE 2. Overview of our proposed PnP-AdaNet (plug-and-play adversarial domain adaptation network), consisting of a source segmentation network,
a domain adaptation module (DAM) and two discriminators. Multi-level activations and predicted segmentation masks are aggregated for alignment of
the latent feature space. The domain router is for testing. It chooses which set of early layers to connect to higher layers for segmentation task.
Specifically, when testing source data, it chooses to use original source early layers; when testing target data, it chooses to use DAM layers.

cross-modality image translation for improving cardiac seg-
mentation with synthetic data. However, these works did not
aim at our topic of unsupervised domain adaptation of CNNs,
which is in principle much more difficult since annotation of
target domain is completely unavailable.

In this paper, we study the challenging topic of unsu-
pervised cross-modality domain adaptation on multi-class
segmentation problem. We present a flexible plug-and-play
adversarial domain adaptation network, called PnP-AdaNet,
which effectively aligns the feature space of the target domain
to that of the source domain. Specifically, the early encoders
are replaced for target domain input, and higher layers are
shared between domains. At adversarial learning, we build
two domain discriminators, respectively connecting multi-
level features and segmentation predictions for joint align-
ment of multi-level feature spaces and output spaces between
domains. This paper is a substantial extension of our prior
work [11], by further modifying the method with a signifi-
cant performance boost, presenting a completely new series
of ablation analysis of our proposed Pnp-AdaNet, adding a
comprehensive comparison with the state-of-the-art methods,
and elaborating the literature review and discussion about
unsupervised domain adaptation. Our main contributions are
summarized as follows:
• We address the challenging yet crucial task of
unsupervised cross-modality domain adaptation for
medical image segmentation. A novel PnP-AdaNet is
proposed to enable a flexible adaptation of the segmen-
tation CNNs by plug-and-play feature encoders.

• Our model is learned with unpaired MRI and CT images
via adversarial learning. To enhance supervision from
discriminators, we aggregate multi-level features and
segmentation mask predictions during training process.

• We extensively validate our method on multi-class car-
diac segmentation with a public challenge data [36]. The
mean Dice of four structures has been recovered from
13.2% to 63.9%, outperforming many state-of-the-art
domain adaptation approaches We also conduct com-
prehensive ablation studies on key method components.
We release our code to facilitate the research community.

II. METHODS
Fig. 2 is an overview of our proposed PnP-AdaNet method.
With a standard segmentation CNN learned on the source
domain, we replace its early layers with a domain adaptation
module while retain its higher layers, for testing on target
domain data. Hence, we call our method as plug-and-play
domain adaptation framework. The adaptation module maps
the target images to the source domain in a latent feature
space with aligned distribution. This process is trained with
adversarial loss in an unsupervised way.

A. SEGMENTATION NETWORK WITHOUT SKIP
CONNECTION
The essence of our proposed PnP-AdaNet is to establish an
independent encoder for each domain and align their fea-
ture distributions in the latent space. Considering that only
the early layers which compose the independent encoders
are updated while those higher layers are fixed, the feature
spaces at different layers need to be self-contained, i.e., not
mixed-up with each other. This means that the network
architectures using skip connections, e.g., the U-Net [37]
and DenseNet [38], are not suitable choices. Otherwise,
the plug-and-play setting would be problematic, because
those domain-specific low-level features forwarded by skip-
connections would affect the aligned high-level feature space
(which is supposed to be shared across domains).

In this regard, we set up our segmentation model as a
dilated network [39], which can extract representative fea-
tures from large receptive fields, while also preserving the
spatial acuity of feature maps. Residual connections inside
local scopes are used for ease of gradients flow. Specifically,
as illustrated in Fig. 2, the input image is firstly forwarded
into a convolutional layer, then proceeded to a series of resid-
ual modules (termed as RM1-7, each consisting of the stacked
3×3 convolutions) and spatially down-sampled by a factor
of eight. Next, to enlarge the receptive field for extracting
the contextual information, 4 dilated convolutional layers are
used in DRM8 with a dilation factor of 2. After another
two convolutional layers Conv9 and Conv10, we conduct
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upsamling to get dense predictions for the segmentation task.
A 5× 5 convolution operation is immediately followed to
smooth out the activation maps. Finally, a softmax layer is
utilized to obtain probabilistic pixel-wise predictions.

Formally, we denote the annotated dataset of the source
domain by X s = {(xs1, y

s
1), ..., (x

s
i , y

s
i ), ..., (x

s
N s , ysN s )}, where

xsi represents a sample pixel of the image and ysi is its cat-
egory label of anatomical structure. We conduct supervised
learning to establish a mapping M s from the input image to
the label space. The segmentation network of source domain
is optimized by minimizing the hybrid loss Lseg composed of
multi-class cross-entropy loss and Dice coefficient loss [40].
Moreover, we denote ysi,c as binary label regarding class c∈C
for sample xsi , its probability prediction is p̂si,c, and the label
prediction is ŷsi,c, the overall segmentation loss function is:

Lseg = −
∑
c∈C

∑N s

i=1 2y
s
i,cŷ

s
i,c∑N s

i=1 y
s
i,cy

s
i,c +

∑N s

i=1 ŷ
s
i,cŷ

s
i,c

−λ

N s∑
i=1

∑
c∈C

wsc · y
s
i,c log(p̂

s
i,c)+ β||W ||

2
2. (1)

The first term is a Dice loss for multiple anatomical struc-
tures, and the second term is cross-entropy loss for individual
pixels. The wsc is the weighting factor which copes with the
issue of class imbalance.We combine the two complementary
losses to tackle the challenging cardiac segmentation task. In
practice, we also tried just using either one, but the perfor-
mance was not as high as using both. The third term is the
L2-regularization of the segmenter weights W . The λ and β
are trade-off weights.

For the ease of notation, we will omit the subscript index
i in following subsections, and directly use xs and ys to
represent the sample and label from the source domain.

B. PLUG-AND-PLAY ADAPTATION MECHANISM
After obtaining the segmentation network trained on the
source domain, we next aim to adapt it onto the target domain,
in an unsupervised manner. In conventional transfer learning,
it is common to update the last several layers of the pre-
trained network towards a new given task with a new label
space. The supporting assumption is that the early layers in
the network extract low-level features which are universal
for vision tasks. The higher layers are more task-specific
and learn semantic-level features for conducting the defined
predictions [41], [42]. In contrast, for domain adaptation,
the defined task remains unchanged across domains. This
means that the label space for source and target domains are
identical, e.g., we segment the same anatomical structures
from unpaired MRI/CT images. Not that images from differ-
ent domains are not required to be co-registered. Basically,
the distribution shift between the cross-modality domains are
primarily low-level characteristics (e.g., gray-scale intensi-
ties) rather than high-level ones (e.g., geometric or semantic
structures).

In these regards, for our model, we design a plug-and-
play adaptation mechanism, i.e., a set of early layers being
replaced, while the higher layers are reused for a new target
domain. The underlying intuition is that, the higher layers
are closely correlated with the shared semantic labels, while
the respective early-layer encoders perform distribution map-
pings in feature space for our unsupervised domain adapta-
tion. Formally, the obtained source segmentation modelM s is
regarded as a layer-wise feature extractor composing stacked
transformations of {M s

l1
, ...,M s

ln}, with the subscript denoting
the network layer index. The prediction of the semantic label
is represented by:

ŷs = M s(xs) = M s
l1:ln (x

s) = M s
ln ◦ ... ◦M

s
l1 (x

s). (2)

For input x t ∈ X t from a target domain, we propose a
domain adaptation module (DAM) denoted by M that maps
x t to the feature space aligned with the source domain. We
denote the adaptation depth by d , i.e., the layers earlier than
and including ld are replaced by DAM when processing the
target domain images. At the same time, the source model’s
higher layers are frozen during domain adaptation learning
and reused for target inference. Hence, the prediction for the
target input is:

ŷt = M s
ld+1:ln ◦M(x t ) = M s

ln ◦ ... ◦M
s
ld+1 ◦M(x t ), (3)

where M(x t ) = Ml1:ld (x
t ) = Mld ◦ ... ◦ Ml1 (x

t ) rep-
resents the DAM which is a stack of convolutional layers
as the feature encoder. In practice, we set the DAM layer
configurations the same as the replaced set of early layers
of source model, i.e., {M s

l1
, ...,M s

ld }. This is a reasonable and
safe implementation choice, as we can initialize the DAM
with a pre-trained source encoder rather than random ini-
tializations. This contributes to a more stable optimization at
adversarial training, especially in our unsupervised learning
scenario.

Overall, we can find that the proposed plug-and-play
domain adaptation mechanism is elegant and rather flexible
at testing. During inference for the target domain, the DAM
directly replaces the early d layers of the source domain
network. The images of the target domain are processed and
mapped to the feature space of source domain using this
DAM. These adapted features are robust to the cross-modality
domain shift, and can be correctly transformed into the label
space via the fixed high-level layers. It is also necessary to
mention that our plug-and-play domain adaptation procedure
does not hurt the performance for the source domain. The
early layer encoding path for the source domain is preserved
and the higher layers are unaffected at learning. Therefore,
our PnP-AdaNet can be flexibly tested for both target and
source domain data, just by selecting the input path.

C. ADVERSARIAL LEARNING FOR FEATURE
SPACE ALIGNMENT
We train our plug-and-play domain adaptation network via
adversarial learning in an unsupervised manner. In the spirit
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of GAN, a generator and a discriminator form a minimax
two-player game. The generator aims to capture the distribu-
tion of the real data, while the discriminator should identify
whether a presented sample comes from the real or learned
distributions. In our PnP-AdaNet, the DAM serves as the
generator which maps the input target image into the latent
feature space of the source domain. The aim of the domain
adaptation module is to encode representations which are
aligned with those encoded from the source domain images.
Hence, the fixed layers in the higher part of source network
can be reused to make semantic-level predictions of seg-
mentation masks. As we have zero annotation for the target
domain, the adaptation process is implicitly supervised by the
discriminators, i.e., forming an adversarial learning game.

In our framework, we propose to employ two discrimi-
nators. Specifically, the input to the first discriminator (i.e.,
the green part in Fig. 2) is an array of aggregated feature
maps of the segmenter. This input has a high dimension with
a relatively complicated distribution. A natural thinking here
is that, we connect the output features of the DAM into the
discriminator. However, the convolutional neural network has
a hierarchical architecture, and the features at one certain
layer rely on activations from its previous layers, and also,
the features are proceeded to affect following layers. If we
just monitor the encoded features immediately obtained from
the DAM, the latent space alignment can be unstable. In
other words, we have no idea whether those activations in
the layers earlier to the adaptation depth are aligned. Also,
the small shift that may still exist at the adaptation layer ld
would be magnified after composing them in higher layers.
To overcome this problem, we aggregate the activations from
multiple layers as input to the discriminator. The gradients
from the discriminator can flow to the DAM via multiple
paths, so that the feature space alignment can be more tightly
supervised. This way of learning shares the spirit of deep
supervision [43] to some extent.

In practice, we aggregate the activations from multiple
levels of layers, and reshape them to the same resolution
for channel concatenation. Formally, we refer to the feature
maps in the selected frozen layers as the set of FH (·) where
H = {k, ..., q} being the set of selected layer indices. Simi-
larly, we denote the selected feature maps of DAM byMA(·)
with A being the selected layer set. In this way, the feature
space of the target domain is (MA(x t ),FH (x t )) and the array
(M s

A(x
s),FH (xs)) is their counterpart for the source domain.

Given the distribution of (M s
A(x

s),FH (xs)) ∼ Psfeature and
that of (MA(x t ),FH (x t )) ∼ Ptfeature, the distance between
these two domain distributions which is to be minimized
is represented as W (Psfeature,P

t
feature). For stabilized training,

we use Wassertein distance [22] of the two distributions as:

W (Psfeature,P
t
feature) = inf

γ∼
∏
(Psfeature,P

t
feature)

E(x,y)∼γ [‖x− y‖],

(4)

where
∏
(Psfeature,P

t
feature) is the set of all joint distributions of

γ (x, y) whose marginals are respectively Psfeature and P
t
feature.

Aligning the latent feature space by directly inputting the
high-dimensional activations to a discriminator is effective
and essential. This might be fine for classification tasks, but
may be sub-optimal for segmentation tasks which require
pixel-wise predictions with fine structures. This implies that
well-aigned output spaces, in our case segmentation mask,
between source and target are also critical. Early studies using
GANs for segmentation applications (not necessarily under
the domain adaptation setting) commonly input the predicted
segmentation masks to the discriminator. When the shape
or structure of the predicted segmentation mask looks dis-
torted (i.e., not looking like the real mask), the discriminator
would impose a penalty. For the specific problem of domain
adaptation at segmentation, we also consider that monitoring
the shape of the predicted segmentation mask is important.
This serves as a correction mechanism for imperfections for
feature alignment in adversarial training.

To this end, we further include an auxiliary discriminator
in our PnP-AdaNet, whose inputs are the predicted segmen-
tation masks of the source and target domains. In this case,
the input is more compact and the discriminator focus purely
on outputs, compared with those of the first discriminator.We
denote the segmentation predictions for the target and source
domains by S(xs) ∼ Psmask and S(x t ) ∼ Ptmask. Following
the Eq. (4), we also employ the Wassertein distance between
source and target distributions:

W (Psmask,P
t
mask) = inf

γ∼
∏
(Psmask,P

t
mask)

E(x,y)∼γ [‖x− y‖].

(5)

The detailed network architectures of the discriminators
are illustrated in Fig. 2. For the model configuration,
the feature discriminator is relatively deeper than the mask
discriminator.

D. LOSS FUNCTIONS AND TRAINING STRATEGIES
In adversarial learning, the DAM is pitted against an adver-
sary with the above two discriminators. We represent the first
discriminator withDf which takes high-dimensional features
as input, and denote the second discriminator by Dm which
takes compact predicted segmentation masks as input. The
pair ofDf andDm implicitly estimate theW (Psfeature,P

t
feature)

and the W (Psmask,P
t
mask), respectively. During the learning

process, the discriminators would try to differentiate the
inputs from the source and target domains. The domain
adaptation with DAM aims to not only remove the domain-
specific patterns in early layers, but also disallow their recov-
ery at higher semantic-level layers. The generatorM (DAM)
and the discriminators {Df , Ds} are jointly optimized via
adversarial loss functions. Specifically, the loss for generator
DAM is:

LM = −E(MA(xt ),FH (xt ))∼Ptfeature[Df (MA(x t ),FH (x t ))]

−ES(xt )∼Ptmask
[Dm(S(x t ))]. (6)
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The losses for learning the discriminators Df and Dm are:

LDf =E(MA(xt ),FH (xt ))∼Ptfeature[Df (MA(x t ),FH (x t ))]

−E(M s
A(x

s),FH (xs))∼Psfeature[Df (M s
A(x

s),FH (xs))],

s.t. ‖Df ‖L≤K , (7)

LDm =ES(xt )∼Ptmask
[Dm(S(x t ))]− ES(xs)∼Psmask

[Dm(S(xs))],
−s.t. ‖Dm‖L≤K , (8)

where K is the Lipschitz constraint of Df , Dm. By alter-
nately updating the generators and discriminators, the DAM
becomes more effective to generate source-like features from
target data for domain adaptation.

In practice, we first train the segmentation network on
the source domain in a supervised manner with standard
stochastic gradient descent. We employ the Adam optimizer
with a batch size of 10 and a learning rate of 1× 10−3.
After obtaining the segmenter, we train {M,Df ,Dm} with
above adversarial loss for unsupervised domain adaptation.
To begin with, we solely update the discriminators for 20k
iterations with a batch size of 6 as a pre-training process.
Next, we alternately update the generator and discrimina-
tors. Following the heuristic rules of training WGAN [22],
we update the generator M for one iteration, every 20 itera-
tions updating theDf andDm. In adversarial learning, we use
the RMSProp optimizer with a learning rate of 3×10−4, and
a stepped decay rate of 0.98 every 100 joint updates. Weight
clipping for discriminator weights is 0.03. The discriminator
and generator losses are scaledwith a factor of 0.002. Dropout
(rate = 0.25) and batch normalization are used in all the
convolutional layers. We use Leaky-ReLU as the activation
function and strided convolutions for down-sampling inside
the discriminators.

III. DATASET AND EVALUATION METRICS
A. DATASET FOR CROSS-MODALITY ADAPTATION
Publicly available medical datasets which contain differ-
ent modalities of images for the same anatomical structure
are rare, hindering progress of investigating the challeng-
ing task of MRI and CT cross-modality domain adaptation.
Fortunately, the challenge of MICCAI 2017 Multi-Modality
Whole Heart Segmentation (MM-WHS) presented 20 MRI
and 20 CT cardiac images with accuratemanual segmentation
annotations. The images are unpaired with the MRI data and
CT data coming from different patients and different sites.
We refer the readers to the original data description paper
of Zhuang et al. [36] for more details about data acquisition
such as the employed scanning protocols. For evaluating the
domain adaptation on cardiac segmentation, we include fol-
lowing four structures: ascending aorta (AA), the left atrium
blood cavity (LA-blood), the left ventricle blood cavity
(LV-blood), and the myocardium of the left ventricle
(LV-myo). We randomly split each modality of the data into
training (16 subjects) and testing (4 subjects) subsets in
experiments.

Our Pnp-AdaNet is designed for unpaired cross-modality
medical image segmentation, the MRI and CT images are not

co-registered in our experiments, as it is not necessary. In pre-
processing, the MRI and CT images are reoriented (in view
direction), resized and cropped centering at the heart region,
such that the view of multi-modal images are roughly on the
same page. We extract MRI and CT scans by 2D slices of
size 256 × 256 at coronal plane during training, and obtain
∼100-300 2D slices for each MRI or CT. The model takes
three adjacent slices as input, for using contextual informa-
tion. The mask label of the middle slice is used as the ground
truth. We conduct the intensity normalization in 3D for each
modality, respectively. Augmentations of rotation, zooming
and affine transformations are utilized to enlarge the training
database.

B. EVALUATION METRICS ON
SEGMENTATION PERFORMANCE
For the evaluation metrics, we follow the common prac-
tice to quantitatively evaluate segmentation methods [44].
The Dice coefficient ([%]) is used to assess the agreement
between the predicted segmentation and ground truth for
cardiac structures. We use the symmetric average surface
distance (ASD)[voxel]) to measure the segmentation perfor-
mance from the perspective of boundary agreement. A higher
Dice and a lower ASD indicate a better segmentation perfor-
mance. Bothmetrics are presented in the format ofmean±std,
which shows the average performance with the cross-subject
variations of the results. For some results, theN/A on theASD
means that at least one subject did not receive any correct
prediction on the structure.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In our experiments, we first set the source domain asMRI and
target domain as CT. We conducted extensive experiments to
demonstrate the severe cross-modality domain shift and the
effectiveness of domain adaptation strategies. Specifically,
we designed the following experimental configurations:
1) training and testing the segmentation network on the source
domain (i.e., Seg-MRI);
2) training and testing the segmentation network on annotated
target domain images, as an upper bound (i.e., Seg-CT);
3) directly testing the source domain segmenter on target data,
with no domain adaptation (i.e., Seg-CT-noDA);
4) our PnP-AdaNet for unsupervised domain adaptation.
In addition, we optimized the practical configurations of

our PnP-AdaNet. Specifically, our ablation studies investi-
gated: i) how the balancing ratio in loss functions between
the two discriminators affects the domain adaptation perfor-
mance, and ii) the importance of inputing multiple levels of
feature maps to Df . Moreover, we implemented a series of
existing popular unsupervised domain adaptation methods
on our dataset, and for comparison on the task of unpaired
cross-modality MRI to CT domain adaptation. Last but not
least, we also report the segmentation results by reverting the
adaptation direction, i.e., adapting from CT to MRI.
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FIGURE 3. Results of different methods for CT image segmentations. Each row presents one typical example, from left to right: (a) raw CT images
(b) ground truth labels (c) supervised training on CT (d) directly applying MRI segmenter on CT data (e) results of DANN (f) results of ADDA (g) results of
CycleGAN (h) results of our proposed PnP-AdaNet. The structures of AA, LA-blood, LV-blood and LV-myo are indicated by yellow, red, green and blue
colors, respectively.

TABLE 1. Quantitative evaluation with Dice of segmentation results on
cardiac structures of different experimental configurations.

B. RESULTS OF PnP-AdaNet FOR UNSUPERVISED
DOMAIN ADAPTATION
Our employed segmentation networkwithout skip connection
serves as the basis for our subsequent domain adaptation pro-
cedures. Hence, we choose to first validate the performance of
this dilated network architecture on the applied whole-heart
segmentation task. Specifically, for Seg-MRI setting, our
model achieves an average Dice of 79.4% across four struc-
tures. To see the comparison, we reference Payer et al. [45]
which used two cascaded fully convolutional networks and
achieved an average Dice of 80.2%, ranking the first in
MICCAI 2017 MM-WHS Challenge. We also directly quote
their reported U-Net results as a complementary comparison.
As the detailed results listed in Table 1, our network’s seg-
mentation performance with standard training is comparable
to the state-of-the-arts, which employed networks based on
3D convolutional kernels. Hence, we can safely regard our
trained segmentation network as a standard baseline model
for the cardiac segmentation task.

As for observing the severe domain shift inherent in
cross-modality medical images, we first directly deploy the
segmentation model trained on MRI domain to CT data.
Unsurprisingly, the MRI segmenter completely fails on CT

images, with an average Dice of merely 13.2% across all the
four structures. Specifically, the Seg-CT-noDA only receives
a Dice of 2.7% for LA-blood and 3.4% for LV-blood. After
domain adaptation, ourPnP-AdaNet presents a great recovery
of the segmentation performance on target CT data com-
pared with Seg-CT-noDA. More specifically, our method has
increased the average Dice across the four cardiac structures
by 50.7%, achieving a score of 63.9%. As presented in the
last column of Fig. 3, the predicted segmentation masks
from PnP-AdaNet can successfully localize the cardiac struc-
tures and further capture their anatomical shapes. Notably,
the segmentation performance on aorta has been significantly
recovered after the adaptation process, almost approaching
the fully supervised upper bound.

C. ABLATION STUDY ON CONFIGURATIONS
In this subsection, we extensively investigate the configura-
tions of ourPnP-AdaNet. Specifically, we observe the domain
adaptation performance by adjusting two key properties:
i) the ratio balancing for losses of these two discriminators
Dm and Df , ii) the selected level of layers to input to the
feature discriminator. We list the results of our experimented
configurations in Table 2.

Specifically, we adjust the ratio of Dm/Df from 0.1 : 1
to 0.7 : 1, with a step of 0.1. As we gradually increase
this ratio, we are actually emphasizing more on the shape
regularization from the mask discriminator. From Table 2,
the first row is solely using Df for only feature-level align-
ment without regularization on the output map, reaching an
average segmentation Dice of 59.6%. Comparing the first
row with the second row (rate = 0.1), we find that adding
the mask discriminator Dm as an auxiliary shape constrain
is effective, which helps to directly suppress those noises or
shape distortions in the outputs. Generally, thePnP-AdaNet is
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TABLE 2. Domain adaptation results of ablation studies adjusting configurations of the proposed PnP-AdaNet.

not very sensitive to this ratio in a range of small-scale values.
When adjusting the radio from 0.1 to 0.4, the performance on
segmenting CT images can stably achieve aDice of over 60%.
The change of the Dice score is not monotonic as we adjust
the ratio. Meanwhile, it also shows that the ratio could not
be set too high, otherwise, the segmentation accuracy on the
target domainwould decrease as observed in our experiments.
The reason could be that straight-forward supervision of the
mask is rather high-level. The mask quality also heavily relies
on the achieved domain-invariance from earlier features. The
two discriminators might also compete with each other when
back-propagating their gradients to the generator (DAM),
especially at the very beginning of training. For the sake of a
high adaptation performance, monitoring the predictedmasks
in the compact semantic space should serve as an auxiliary
supporting role.

As already observed that aligning the feature space is
essential in our method, we furthermore investigate which
layers to input their features to Df . Intuitively, aligning
shallow layers encourages domain-invariance of low-level
features which are the basis for all higher-level representa-
tions. The layer at the adaptation depth is obviously crucial as
it is the dividing point in our plug-and-play setting. Connect-
ing the discriminator with deeper layers, although they are
not updated in the adaptation process, can help to retain the
alignment and prevent recovery of domain-specific informa-
tion within the high-level space. To observe the effectiveness
of multi-level feature supervision, we conducted experiments
by removing a low-level layer (RM4), the transaction layer
(RM6) and a high-level layer (Conv10) from feature discrim-
inator Df . From Table 2, we can observe that missing either
level of the feature maps would reduce the performance by
a noticeable margin. In practice, we also find that connecting
the compact activations immediately before the softmax layer
to Df is crucial. If we remove it from the feature discrimi-
nator input, a severe drop of performance will be seen. This
observation again confirms the importance of monitoring the
high-level compact spaces with strong semantic relevance.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
As our investigated topic of unsupervised domain adapta-
tion on cross-modality medical image segmentation is quite
new in the field, there are few previous studies that could

be compared with. However, this problem deserves further
careful explorations, given that CNNs are dominating cur-
rent segmentation methods, and their generalization capabil-
ity considerably matters. Different from the cross-site and
cross-sequence domain shifts, we regard cross-modality shift
between CT andMRI as one of the most challenging settings.

To promote and facilitate future studies on cross-modality
domain adaptation, in addition to our own prior work of [11],
we also implemented several state-of-the-art methods which
are popular for unsupervised domain adaptation in natu-
ral computer vision. We used the same dataset and seg-
menter architecture settings for all the methods, with results
listed in Table 3. Specifically, the approach of DANN [17]
encourages domain-invariance in feature space. The source
and target domains share the feature extractor. A domain
classifier is connected to the output of the encoder to
monitor domain-invariance. Another alternative approach is
ADDA [16] which also aligns source and target domain
distributions in the feature space. In this method, the source
and target domains have their own feature encoders until the
last softmax layer. A discriminator is used to differentiate
which features come fromwhich domain. A third comparison
method we include in the comparison is CycleGAN [23],
which produces impressive image-to-image transformations.
We transform the MRI images to the appearance of CT, and
train a segmenter with the transformed images and the MRI
labels. We demonstrate typical examples of the generated CT
images from MRI using CycleGAN in Fig. 4.

Observing performances of the domain adaptation meth-
ods, we can see that all of them are able to effectively
recover the segmentation accuracy on target CT data. More
specifically, in terms of different cardiac structures, all the
methods perform better for ascending aorta and left atrium
blood cavity than on the structures of left ventricle blood
cavity and myocardium. The reason could be that these
anatomical structures, especially the myocardium, have rel-
atively complicated geometry, which increases the difficulty
for unsupervised domain adaptation. In contrast, the aorta
presents a more compact shape as well as clear boundaries,
and reasonably, receiving the best recovery. Compared with
DANN and ADDA which also used feature-level adapta-
tion, our proposed PnP-AdaNet achieves better performance.
The reason is that we neither share nor separate all the
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TABLE 3. Comparison of different approaches on unpaired MRI to CT cross-modality domain adaptation of cardiac structure segmentation.

TABLE 4. Results of reverting the domain adaptation direction, i.e., adapting the segmentation network from CT to MRI.

FIGURE 4. Examples of MRI to CT image-to-image translations with
CycleGAN. Left to right: Original MRI image, generated CT image, MRI
with segmentation ground truth, and generated CT with corresponding
MRI ground truth.

feature encoding layers between source and target domains.
Instead, our plug-and-play mechanism regards low-level fea-
tures as domain-specific, while high-level feature encoders
as sharable. Moreover, connecting multi-level features to
the discriminator also plays a crucial role. The CycleGAN
presents highly competitive results. We analyze that this can
attribute to the pixel-wise supervision, particularly towards
the segmentation task. The explicit supervision, although
it maybe noisy, can encourage the predictions to consis-
tently focus on the heart region. The good ASD results with
CycleGAN also indicate clean masks. The deficiency of
our feature-aligning method mainly appears at those unclear
boundaries between neighboring structures, or wrong predic-
tions on relatively homogeneous tissues but away from the
ROI. With a very simple post-processing strategy, i.e., only
remaining the largest 3D connected component for every
class, we can reduce the ASD to 4.1, 5.4, 7.4 and 6.2 for the
AA, LA-blood, LV-blood and LV-myo, respectively. Finally,
compared with our own prior work of [11], the performance
improvement comes from the usage of dual discriminators,
with a more explicit constrain on the shape of segmentation.

E. REVERTING DOMAIN ADAPTATION DIRECTION
A natural question to ask is whether domain adaptation for
the segmentation task is symmetric to modality, i.e. whether
the reverse adaptation direction from CT to MRI can also

be achieved. To investigate this, we apply the same model
setting, but only replacing the source domain as CT and
target domain as MRI. The quantitative adaptation results are
presented in Table 4. Directly using the CT segmenter onMRI
data also unsurprisingly fails. Our proposed PnP-AdaNet is
able to recover the average segmentation Dice to 54.3%.
Notably, the best recovered structure in this reverse setting
is the LV-blood, not the same structure (AA) as the direction
of MRI to CT. As a more interesting observation, the Dice
increases from complete failure (3.4%) to a considerably
high value (77.7%). Results of the other three structures are
not as promising. Compared with adaptation from MRI to
CT, the reverse direction yields lower performance, which
can be expected. Segmenting cardiac MRI itself is more
difficult than segmenting cardiac CT. This is also notable
from Table 1, where the CT segmentation Dice is higher
than the result of MRI across all four structures. In these
regards, transferring a CT segmenter to MRI seems more
challenging. Our experimental results indicate that cross-
modality domain adaptation can be achieved in both direc-
tions, however, the difficulty seems to be asymmetric.

V. DISCUSSIONS
In this paper, we try to tackle the domain adaptation prob-
lem under a very challenging as well as important setting
of cross-modality medical datasets. As deep learning has
become the de-facto standard for solving segmentation and
detection tasks, investigating its generalization capability and
robustness is essential. Existing successful practice using
deep networks is to train and test the models with the same
data source. However, it has been frequently revealed in
very recent works, that the models would perform poorly on
unseen datasets [7], [10], [26]. Resolving the domain adap-
tation issue holds great potentials for, applying trained deep
learning models to wider clinical use, building more powerful
networks using large-scale database combing images from
multiple sites, and helping to understand how the networks
capture the data distributions tomake recognition predictions.
In these regards, we explore effective unsupervised domain
adaptation solution, under one of the most challenging
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settings as the multi-class segmentation of cross-modality
medical images.

The appearance differences betweenMRI and CT scans are
apparent. Although the human eye could match the structures
on the two modalities, from a perspective of image com-
puting, the system ‘‘sees’’ distinct distributions of intensity
values. For concrete example, see Fig. 1 again, the intensity
range of myocardium and its contrast with the nearby tissues
is very different on MRI and CT. In this case, the model that
learns discriminative features from one modality is naturally
inapplicable to the data manifold of another modality. Gener-
ally speaking, it is rather difficult for a model to generalize
from one domain to another, where the measure of their
support intersection is almost zero. On the other hand, multi-
modality data have become indispensable tools in modern
clinical routine. Cross-modality synthesis and segmentation
has been gaining research popularity rapidly [46], [47]. Con-
sidering cardiology as currently the most typical scenario
which uses both MRI and CT, we conduct our study on
cardiac images.

Towards domain adaptation, we present a novel frame-
work, i.e., PnP-AdaNet, which is very flexible and light-
weight in practical use. We replace the early layers of an
established network with a DAM at the testing process. The
assumption is that, in cross-modality medical images for the
same organ, those low-level features are domain-specific,
while the semantic feature compositions at higher layers
are shared and could be re-used across different modalities.
To learn the DAM, we encourage the extracted features of
the target domain to be aligned with the source feature in
distributions. A notable setting in our PnP-AdaNet is incor-
porating multi-level adversarial learning, which makes the
DAM tightly conditioned by the source distributions. Another
hyper-parameter, which needs to be considered when using
the plug-and-play strategy, is the adaptation depth d . In our
prior work Dou et al. [11], we have experimentally inves-
tigated the influence of adjusting the choice of adaptation
depth. Intuitively, a smaller d (i.e., shallower DAM with
fewer parameters) might be less capable of learning effective
feature mappings across domains. On the other hand, training
a much deeper DAM solely with adversarial gradients would
be difficult and unstable. A recent work studying a gener-
alization upper-bound for unsupervised domain adaptation
also indicated similar insights [48]. The paper derived that
minimizing the generalization risk across domains requires a
function with particular characteristics. It needs to be capable
enough for reducing the Wasserstein distance to a desired
degree for maintaining adaptation quality, meanwhile, also
should control the complexity of reducing the generaliza-
tion risk. Our experimental findings in [11] matched these
insights, i.e., plugging the first six residual blocks yielded the
highest performance. Hence, we suggest to select a middle-
level layer as the adaptation depth, when embedding our plug-
and-play strategy into other similar applications.

When thinking of solutions for domain adaptation, an
alternative way is to take advantages of image-to-image

translation. The networks using cycle-consistency loss can
generate plausible synthetic images, which then can either
be employed for training or testing. The potential risk
of pixel-space translation would be that the distortions
and artifacts might be propagated or amplified in down-
stream processing. For example, Cohen et al. [49] found
that CycleGAN based medical image translations mod-
els trained on imbalanced datasets would hide dangerous
brain tumors in synthetic images. From our own experi-
mental experiences, the cross-modality translation of non-
tumor medical images is feasible using CycleGAN, and the
reconstructed images also look quite realistic. It can bring
positive effects when using synthetic images towards the
scenario of domain adaptation, however, it cannot solve
the problem perfectly. We analyze that the reasons are at
least two-folds. One is that there still exists domain shift
between the synthetic images and real images, although
their appearances somehow look similar [30]. The other is
that the generated images may on a pixel-level not match
with the original image. Therefore, the training pairs of
image and label are imperfect. In contrast, feature-level
adaptations, such as ours, do not suffer from these prob-
lems, as the adaptation and task-specific training are not
detached.

Although we achieved promising results, there are still
limitations. The backbone of our network is a 2D CNN.
In practice, we aggregate the adjacent three slices as the input
channels to the models. This is common practice to overcome
current single GPU memory constraints. It maybe benefi-
cial to employ more carefully tailored networks for CT/MRI
image analysis with 2.5D [50] or 3D CNNs [51]. In this
work, we also tried to conduct the domain adaptation on the
basis of 3D segmentation networks. However, we were faced
with difficulties of memory consumption given the use of one
segmenter, one generator and two discriminators. Moreover,
optimizing 3D networks in unsupervised adversarial learning
is also very challenging. In these regards, we chose to first
down-grade the network to 2D, so that we can focus on
the domain adaptation part which is the core of this paper.
There are still not many works using 3D CNNs for GANs on
medical applications. One recent work is Zhang et al. [30]
which synthesized CT from MRI on cardiac data using an
end-to-end 3D CNN. Another work is Pan et al. [28] which
used a 3D cycle-consistent GAN to synthesize missing PET
from MRI for neuroimage. To the best of our knowledge,
the work of [9] was the first to employ 3D CNNs in domain
adaptation for medical image segmentation task, which tack-
led different MRI sequences. Exploring the effectiveness of
cross-modality domain adaptation approaches on the basis
of 3D network is planned in our future work. In addition,
we also plan to extend our method towards heterogeneous
domain adaptation, for tackling a more challenging situation
where the target domain is significantly different from the
source domain in terms of not only low-level appearance but
also high-level semantic structures. For example, we may
adapt a neural network trained on a healthy cohort of MRI to
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a severe-diseased cohort of CT data, which holds promising
clinical significance.

VI. CONCLUSION
In conclusion, we investigate the challenging yet crucial task
of unsupervised domain adaptation on cross-modality med-
ical images. We propose a novel approach, called plug-and-
play adversarial domain adaptation network (PnP-AdaNet),
which aligns the latent feature space of the target domain
to that of the source domain. Extensive experiments with
comparision with state-of-the-arts have validated the effec-
tiveness of our method.Moreover, to facilitate future research
on the cross-modality domain adaptation problem, we open-
source our code using the well-organized cardiac segmen-
tation challenge dataset. We believe that the cross-modality
domain adaptation task will witness rapid development as an
important topic in the scope of digital health.
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